How Will You Know You’ve Succeeded? A BRAIN story

August 2008: A summer day in Mountain View California. The previous year, In 2007, The Krasnow Institute for Advanced Study, which I was leading at George Mason University, had developed a proposal to invest tons of money in figuring out how mind emerges from brains and now I had to make the case that it deserved to be a centerpiece of a new administration’s science agenda. Three billion dollars is not a small ask, especially in the context of the 2008 financial crisis that was accelerating.

Before this moment, the project had evolved organically: a kickoff meeting at the Krasnow Institute near D.C., a joint manifesto published in Science Magazine, and then follow-on events in Des Moines, Berlin and Singapore to emphasize the broader aspects of such a large neuroscience collaboration. There even had been a radio interview with Oprah.

When I flew out to Google’s Mountain View headquarters in August 2008 for the SciFoo conference, I didn’t expect to be defending the future of neuroscience over lunch. But the individual who was running the science transition for the Obama Presidential Campaign, had summoned me for what he described as a “simple” conversation: defend our idea for investing $3 billion over the next decade in neuroscience with the audacious goal of explaining how “mind” emerges from “brains.” It was not the kind of meeting I was ready for.

I was nervous. As an institute director, I’d pitched for million-dollar checks. This was a whole new scale of fundraising for me. And though, California was my native state, I’d never gone beyond being a student body president out there. Google’s headquarters in summer of 2008 was an altar to Silicon Valley power.

SciFoo itself was still in its infancy then – the whole “unconference” concept felt radical and exciting, a fitting backdrop for pitching transformational science. But the Obama campaign wasn’t there for the unconventional meeting format. Google was a convenient meeting spot. And they wanted conventional answers.

I thought I made a compelling case: this investment could improve the lives of millions of patients with brain diseases. Neuroscience was on the verge of delivering cures. (I was wrong about that, but I believed it at the time.) The tools were ready. The knowledge was accumulating. We just needed the resources to put it all together.

Then I was asked the question that killed my pitch: “How will we know we have succeeded? What’s the equivalent of Kennedy’s moon landing – a clear milestone that tells us we’ve achieved what we set out to do?” You could see those astronauts come down the ladder of the lunar module. You could see that American flag on the moon. No such prospects with a large neuroscience initiative.

I had no answer.

I fumbled through some vague statements about understanding neural circuits and developing new therapies, but even as the words left my mouth, I knew they were inadequate. The moon landing worked as a political and scientific goal because it was binary: either we put a man on the moon or we didn’t. Either the flag was planted or it wasn’t.

But “explaining how mind emerges from brains”? When would we know we’d done that? What would success even look like?

The lunch ended politely. I flew back to DC convinced it had been an utter failure.

But that wasn’t the end of it. Five years later, at the beginning of Obama’s second presidential term, we began to hear news of a large initiative driven by the White House called the Brain Activity Map or BAM for short. The idea was to comprehensively map the functional activity of brains at high spatial and temporal resolution beyond that available at the time. It was like my original pitch both in scale (dollars) and in the notion that it was important to understand how mind emerges from brain function. The goal for the new BAM project was to be able to map between the activity and the brain’s emergent “mind”-like behavior, both in the healthy and pathological cases. But the BAM project trial balloon, even coming from the White House, was not an immediate slam dunk.

There was immediate push-back from large segments of the neuroscience community that felt excluded from BAM, but with a quick top-down recalibration from the White House Office of Science and Technology Policy and a whole of government approach that included multiple science agencies, BRAIN (Brain Research through Advancing Innovative Neurotechnologies) was born in April of 2013.

A year later, in April of 2014, I was approached to head Biological Sciences at the US National Science Foundation. When I took the job that October, I was leading a directorate with a budget of $750 million annually that supported research across the full spectrum of the life sciences – from molecular biology to ecosystems. I would also serve as NSF’s co-lead for the Obama Administration’s BRAIN Initiative—an acknowledgement of the failed pitch in Mountain View, I guess.

October 2014: sworn in and meeting with my senior management team–now here I was, a little more than a year into BRAIN. I had gotten what I’d asked for in Mountain View. Sort of. We had the funding, we had the talent, we had review panels evaluating hundreds of proposals. But I kept thinking about the question—the one I couldn’t answer then and still struggled with now. We had built this entire apparatus for funding transformational research, yet we were asking reviewers to apply the same criteria that would have rejected Einstein’s miracle year. How do you evaluate research when you can’t articulate clear success metrics? How do you fund work that challenges fundamental assumptions when your review criteria reward preliminary data and well-defined hypotheses?

Several months later, testifying before Congress about the BRAIN project, I remember fumbling again at the direct question of when we would deliver cures for dreaded brain diseases like ALS and Schizophrenia. I punted: that was an NIH problem (even though the original pitch had been about delivering revolutionary treatments. At NSF, we were about understanding the healthy brain. In fact, how could you ever understand brain disease without a deep comprehension of the non-pathological condition?

It was a reasonable bureaucratic answer. NIH does disease; NSF does basic science. Clean jurisdictional boundaries. But sitting there in that hearing room, I realized I was falling into the same trap that had seemingly doomed our pitch in 2008: on being asked for the delivery date of a clear criterion for success, I was waffling. Only this time, I was the agent for the funder: the American taxpayer.

The truth was uncomfortable. We had launched an initiative explicitly designed to support transformational research – research that would “show us how individual brain cells and complex neural circuits interact” in ways we couldn’t yet imagine. But when it came time to evaluate proposals, we fell back on the same criteria that favored incrementalism: preliminary data, clear hypotheses, established track records, well-defined deliverables. We were asking Einstein for preliminary data on special relativity.

And we weren’t unique. This was the system. This was how peer review worked across federal science funding. We had built an elaborate apparatus designed to be fair, objective, and accountable to Congress and taxpayers. What we had built was a machine that systematically filtered out the kind of work that might transform neuroscience.

All of this was years before the “neuroscience winter”—where massive scientific misconduct was unearthed in neurodegenerative disease research—which included Alzheimer’s. But the modus operandi of BRAIN foreshadowed it.

Starting in 2022, a series of investigations revealed that some of the most influential research on Alzheimer’s disease—work that had shaped the field for nearly two decades and guided billions in research funding—was built on fabricated data. Images had been manipulated. Results had been doctored. And this work had sailed through peer review at top journals, had been cited thousands of times, and had successfully competed for grant funding year after year. The amyloid hypothesis, which this fraudulent research had bolstered, had become scientific orthodoxy not because the evidence was overwhelming, but because it fit neatly into the kind of clear, well-defined research program that review panels knew how to evaluate.

Here was the other side of the Einstein problem that I’ve mentioned in previous posts. The same system that would have rejected Einstein’s 1905 papers for lack of preliminary data and institutional support had enthusiastically funded research that looked rigorous but was fabricated. Because the fraudulent work had all the elements that peer review rewards: clear hypotheses, preliminary data, incremental progress building on established findings, well-defined success metrics. It looked like good science. It checked all the boxes.

Meanwhile, genuinely transformational work—the kind that challenges fundamental assumptions, that crosses disciplinary boundaries, that can’t provide preliminary data because the questions are too new—struggles to get funded. Not because reviewers are incompetent or malicious, but because we’ve built a system that is literally optimized to make these mistakes. We’ve created an apparatus that rewards the appearance of rigor over actual discovery, that favors consensus over challenge, that funds incrementalism and filters out transformation.

So, what’s the real function of peer review? It’s supposed to be about identifying transformative research, but I don’t think that the real purpose. To my mind, the real purpose of peer review panels at NSF, the study sections at NIH, is to make inherently flawed funding decisions defensible—both to Congress and the American taxpayer. The criteria, intellectual merit, broader impacts at NSF, make awarding grant dollars auditable and fair seeming, not because they identify breakthrough work.

But honestly, there’s a real dilemma here: if you gave out NSF’s annual budget based on a program officer’s feeling that “this seems promising”, you’d face legitimate questions about cronyism, waste and arbitrary decision-making. The current system’s flaws aren’t bad policy accidents; they are the price we pay for other values we also care about.

So, did the BRAIN Initiative deliver on that pitch I made in Mountain View in 2008? Did we figure out how ‘mind’ emerges from ‘brains’? In retrospect, I remain super impressed by NSF’s  NeuroNex program: we got impressive technology – better ways to record from more neurons, new imaging techniques, sophisticated tools. We trained a generation of neuroscientists. But that foundational question – the one that made the political case, the one that justified the investment – we’re not meaningfully closer to answering it. We made incremental progress on questions we already knew how to ask. Which is exactly what peer review is designed to deliver. Oh, and one other thing that was produced: NIH’s parent agency, the Department of Health and Human Services,  got a trademark issued on the name of the initiative itself, BRAIN.

I spent four years as NSF’s co-lead on BRAIN trying to make transformational neuroscience happen within this system. I believed in it. I still believe in federal science funding. But I’ve stopped pretending the tension doesn’t exist. The very structure that makes BRAIN funding defensible to Congress made the transformational science we promised nearly impossible to deliver.

That failed pitch at Google’s headquarters in 2008. Turns out that the question was spot on we just never answered it.

Why Transformational Science Can’t Get Funded: The Einstein Problem

Proposal declined. Insufficient institutional support. No preliminary data. Applicant lacks relevant expertise—they work in a patent office, not a research laboratory. The proposed research is too speculative and challenges well-established physical laws without adequate justification. The principal investigator is 26 years old and has no prior experience in physics.

This would have been the fate of Albert Einstein in 1905, had the NSF existed as it does today. Even with grant calls requesting ‘transformative ideas,’ an Einstein proposal would have been rejected outright. And yet, that year 1905 has been called Einstein’s miracle year. Yes, he was a patent clerk working in Bern, Switzerland, without a university affiliation. He had neither access to a laboratory nor equipment. He worked in isolation on evenings and weekends and was unknown in the physics community. Yet, despite those disadvantages, he produced four revolutionary papers on the Photoelectric Effect, Brownian motion, Special Relativity, and the famous E=mc2 energy-mass equivalence.

Taken as a whole, the work was purely theoretical. There were no preliminary data. The papers challenged fundamental assumptions of the field and, as such, were highly speculative and definitively high-risk. There were no broader impacts because there were no immediate practical applications. And the work was inherently multidisciplinary, bridging mechanics, optics, and thermodynamics. Yet, the work was transformative. By modern grant standards, Einstein’s work failed every criterion.

The Modern Grant Application – A Thought Experiment

Let’s imagine Einstein’s 1905 work packaged as a current NSF proposal. What would it look like, and how would it fare in peer review?

Einstein’s Hypothetical NSF Proposal

Project Title: Reconceptualizing the Fundamental Nature of Space, Time, and the Propagation of Light

Principal Investigator: Albert Einstein, Technical Expert Third Class, Swiss Federal Patent Office

Institution: None (individual applicant)

Requested Duration: 3 years

Budget: $150,000 (minimal – just salary support and travel to one conference)

Project Summary

This proposal challenges the fundamental assumptions underlying Newtonian mechanics and Maxwell’s electromagnetic theory. I propose that space and time are not absolute but relative, dependent on the observer’s state of motion. This requires abandoning the concept of the luminiferous ether and reconceptualizing the relationship between matter and energy. The work will be entirely theoretical, relying on thought experiments and mathematical derivation to establish a new framework for understanding physical reality.

How NSF Review Panels Would Evaluate This

Intellectual Merit: Poor

Criterion: Does the proposed activity advance knowledge and understanding?

Panel Assessment: The proposal makes extraordinary claims without adequate preliminary data. The applicant asserts that Newtonian mechanics—the foundation of physics for over 200 years—requires fundamental revision yet provides no experimental evidence supporting this radical departure.

Specific Concerns:

Lack of Preliminary Results: The proposal contains no preliminary data demonstrating the feasibility of the approach. There are no prior publications by the applicant in peer-reviewed physics journals. The applicant references his own unpublished manuscripts, which cannot be evaluated.

Methodology Insufficient: The proposed “thought experiments” do not constitute rigorous scientific methodology. How will hypotheses be tested? What experimental validation is planned? The proposal describes mathematical derivations but provides no pathway to empirical verification. Without experimental confirmation, these remain untestable speculations.

Contradicts Established Science: The proposal challenges Newton’s laws of motion and the existence of the luminiferous ether—concepts supported by centuries of successful physics. While scientific progress requires questioning assumptions, such fundamental challenges require extraordinary evidence. The applicant provides none.

Lack of Expertise: The PI works at a patent office and has no formal research position. He has no advisor supporting this work, no collaborators at research institutions, and no track record in theoretical physics. His biosketch lists a doctorate from the University of Zurich but no subsequent research appointments or publications in relevant areas.

Representative Reviewer Comments:

Reviewer 1: “While the mathematical treatment shows some sophistication, the fundamental premise—that simultaneity is relative—contradicts basic physical intuition and has no experimental support. The proposal reads more like philosophy than physics.”

Reviewer 2: “The applicant’s treatment of the photoelectric effect proposes that light behaves as discrete particles, directly contradicting Maxwell’s well-established wave theory. This is not innovation; it’s contradiction without justification.”

Reviewer 3: “I appreciate the applicant’s ambition, but this proposal is not ready for funding. I recommend the PI establish himself at a research institution, publish preliminary findings, and gather experimental evidence before requesting support for such speculative work. Perhaps a collaboration with experimentalists at a major university would strengthen future submissions.”

Broader Impacts: Very Poor

Criterion: Does the proposed activity benefit society and achieve specific societal outcomes?

Panel Assessment: The proposal fails to articulate any concrete broader impacts. The work is purely theoretical with no clear pathway to societal benefit.

Specific Concerns:

No Clear Applications: The proposal does not explain how reconceptualizing space and time would benefit society. What problems would this solve? What technologies would it enable? The PI suggests the work is “fundamental” but provides no examples of potential applications.

No Educational Component: There is no plan for training students or postdocs. The PI works alone at a patent office, with no access to students and no institutional infrastructure for education and training.

No Outreach Plan: The proposal includes no activities to communicate findings to the public or policymakers. There is no plan for broader dissemination beyond potential publication in physics journals.

Questionable Impact Timeline: Even if the proposed theories are correct, the proposal provides no timeline for practical applications. How long until these ideas translate into societal benefit? The proposal is silent on this critical question.

Representative Reviewer Comments:

Reviewer 1: “The broader impacts section is essentially non-existent. The PI states that ‘fundamental understanding of nature has intrinsic value,’ but this does not meet NSF’s requirement for concrete societal outcomes.”

Reviewer 2: “I cannot envision how this work, even if successful, would lead to practical applications within a reasonable timeframe. The proposal needs to articulate a clear pathway from theory to impact.”

Reviewer 3: “NSF has limited resources and must prioritize research with demonstrable benefits to society. This proposal does not make that case.”

Panel Summary and Recommendation

Intellectual Merit Rating: Poor
Broader Impacts Rating: Very Poor

Overall Assessment: While the panel appreciates the PI’s creativity and mathematical ability, the proposal is highly speculative, lacks preliminary data, contradicts established physical laws without sufficient justification, and fails to articulate broader impacts. The PI’s lack of institutional affiliation and research track record raises concerns about feasibility.

The panel notes that the PI appears talented and encourages resubmission after:

  1. Establishing an independent position at a research institution
  2. Publishing preliminary findings in peer-reviewed journals
  3. Developing collaborations with experimental physicists
  4. Articulating a clearer pathway to practical applications
  5. Demonstrating broader impacts through education and outreach

Recommendation: Decline

Panel Consensus: Not competitive for funding in the current cycle. The proposal would need substantial revision and preliminary results before it could be considered favorably.

The Summary Statement Einstein Would Receive

Dear Dr. Einstein,

Thank you for your submission to the National Science Foundation. Unfortunately, your proposal, “Reconceptualizing the Fundamental Nature of Space, Time, and the Propagation of Light,” was not recommended for funding.

The panel recognized your ambition and mathematical capabilities but identified several concerns that prevented a favorable recommendation:

– Lack of preliminary data supporting the feasibility of your approach – Insufficient experimental validation of your theoretical claims
– Absence of institutional support and research infrastructure – Inadequate articulation of broader impacts and societal benefits

We encourage you to address these concerns and consider resubmission in a future cycle. You may wish to establish collaborations with experimentalists and develop a clearer pathway from theory to application.

We appreciate your interest in NSF funding and wish you success in your future endeavors.

Sincerely,
NSF Program Officer

And that would be it. Einstein’s miracle year—four papers that transformed physics and laid the groundwork for quantum mechanics, nuclear energy, GPS satellites, and our modern understanding of the cosmos—would have died in peer review, never funded, never attempted.

The system would have protected us from wasting taxpayer dollars on such speculation. It would have worked exactly as designed.

The Preliminary Data Paradox

The contemporary scientific grant review process implicitly expects foundational work in transformative science to present preliminary data, despite knowing that truly groundbreaking ideas often do not originate from such tangible evidence but instead evolves through thought experiments and mathematical derivations, as Einstein did. This unrealistic expectation stifles innovation at its core – the process essentially forces researchers like Einstein to abandon pure theoretical exploration and confine them to a narrow experimental framework, where they cannot freely challenge existing paradigms, even when their work holds no immediate empirical validation yet promises to revolutionize our understanding fundamentally.

The Risk-Aversion Problem

Often, in grant reviews, I see a very junior reviewer criticize work as being too risky—dooming the proposal to failure—while simultaneously sensing their admiration for the promise and transformative nature of the work. The conservative nature and risk-averse mentality of modern grant review panels are deeply rooted in the scientific community’s culture that values incremental advances over speculative leaps – a bias born from career motivations wherein funding decisions can make or break one’s professional trajectory. Reviewers often exhibit reluctance to invest support into proposals like Einstein’s, as they pose potential controversy and may not align with personal research interests due to the associated risks of failure – a reflection of how science has traditionally evolved through evolutionary rather than revolutionary processes within academic institutions.

The Credentials Catch-22

To secure funding in today’s scientific landscape, one often needs institutional affiliation and an impressive publication record that reflects strong research credentials – a catch-22 scenario wherein groundbreaking innovators with no formal backing or prior experience find it challenging to gain the trust of reviewers. This requirement discriminates against fresh perspectives from individuals such as Einstein, who was working outside established institutions and did not have access to mentorship, which is typically deemed necessary for academic recognition – a stark contrast in how transformative outsider thinkers with unconventional backgrounds historically nurtured science.

The Short-Term Timeline Problem

Einstein developed special relativity over years with no milestones, no quarterly reports, no renewals. How would he answer, ‘What will you accomplish in Year 2?” The funding cycle durations set forth by major grant agencies, such as NSF’s typical three to five years for regular grants and the NIH’s maximum of five years, do not accommodate the long periods necessary for fully developing foundational theories that require time-intensive evolution. Such timelines impose an unfair constraint on researchers like Einstein, whose transformative ideas did not evolve within strict milestones but unfolded in an unconstrained fashion – showcasing the incompatibility of this model with truly revolutionary scientific discoveries where a linear progression is unrealistic and even counterproductive.

The Impact Statement Trap

Requirements for demonstrating immediate “broader impacts” or societal benefits pose significant obstacles to transformative research proposals that often envision far-reaching implications beyond their direct applications – an aspect Einstein’s work exemplifies best with its foundational role in advancing physics. The trap lies when reviewers, fearing potential misuse of speculative science or unable to perceive future benefits due to cognitive biases, force research proposals into a mold where immediate practical impact takes precedence over visionary scientific contributions, further marginalizing transformative studies that could potentially unlock new dimensions in various fields.

The Interdisciplinary Gap

The inherent disciplinarity of current grant funding schemes disconnects them from the interdisciplinary essence required for revolutionary research proposals like Einstein’s – a reality where transformative work frequently transcends conventional academic boundaries by merging concepts across multiple fields. This approach often results in an exclusion not only based on institutional affiliation but also because of its challenge to compartmentalized funding models that struggle with the non-linear, cross-disciplinary nature integral to truly transformative science – a significant obstacle for proposals inherently interdisciplinary yet unable to fit neatly within program structures or expertise.

The hypothetical funding scenarios for transformational science, as presented through the lens of Albert Einstein’s groundbreaking work, illustrate the inherent challenges faced by revolutionary ideas. To further highlight this problem, let’s take a look at other seminal discoveries that may have been overlooked or deemed unworthy of support under current grant review criteria:

Copernicus’ Heliocentric Model: In a contemporary setting, Copernicus’ heliocentric model might face skepticism due to its challenge to the widely accepted geocentric view of the universe. Lacking preliminary data and facing resistance from established religious beliefs, his proposal would likely be rejected under modern grant review criteria, despite its ultimate validation through observation and mathematical proof.

Gregor Mendel’s Pea Plant Experiments: The foundation of modern genetics was laid by Mendel’s pea plant experiments, yet his work remained largely unnoticed for decades after its initial publication. A grant reviewer in 1863 would likely have dismissed Mendel’s findings as too speculative and without immediate practical applications, thereby overlooking the fundamental insights he provided about heredity and genetic inheritance.

mRNA Vaccines: Katalin KarikĂł spent decades struggling to fund mRNA therapeutic research. Too risky. Too speculative. No clear applications. Penn demoted her. NIH rejected her grants. Reviewers wanted proof that mRNA could work as a therapeutic platform, but without funding, she couldn’t generate that proof. Then COVID-19 hit, and mRNA vaccines saved millions of lives. The technology that couldn’t get funded became one of the most important medical breakthroughs of the century.

Why does all of this matter now? First, the evidence is mounting that American science is at an inflection point. The rate of truly disruptive discoveries—those that reshape fields rather than incrementally advance them—has been declining for decades, even as scientific output has grown. Both NSF and NIH leadership recognize this troubling trend.

This innovation crisis manifests in the problems we cannot solve. Cancer and Alzheimer’s have resisted decades of intensive research. AI alignment and safety remain fundamentally unsolved as we deploy increasingly powerful systems. We haven’t returned to the moon in over 50 years. In my own field of neuroscience, incremental progress has failed to produce treatments for the diseases that devastate millions of families.

These failures point to a deeper problem: we’ve optimized our funding system for incremental advances, not transformational breakthroughs. Making matters worse, we’re losing ground internationally. China’s funding models allow longer timelines and embrace higher risk. European ERC grants support more adventurous research. Many of our best researchers now weigh opportunities overseas or in industry, where they can pursue riskier ideas with greater freedom.

What Needs to Change

Fixing this requires fundamental changes at multiple levels—from how we structure programs to how we evaluate proposals to how we support unconventional researchers.

Create separate funding streams for high-risk research. NSF and NIH need more programs that emulate DARPA’s high-risk, high-reward model. These programs should be insulated from traditional grant review: no preliminary data required, longer timelines (10+ years), and peer review conducted by scientists who have themselves taken major risks and succeeded. I propose that 10 percent of each agency’s budget be set aside for “Einstein Grants”—awards that take the view opposite the status quo. Judge proposals on originality and potential impact, not feasibility and preliminary data. Accept that most will fail, but the few that succeed will be transformational.

Protect exploratory research within traditional programs. Even standard grant programs should allow pivots when researchers discover unexpected directions. We should fund people with track records of insight, not just projects with detailed timelines. Judge proposals on the quality of thinking, not the completeness of deliverables.

Reform peer review processes. The current system needs three critical changes. First, separate review tracks for incremental versus transformational proposals—they require fundamentally different evaluation criteria. Second, don’t let a single negative review kill bold ideas; if three reviewers are enthusiastic and one is skeptical, fund it. Third, value originality over feasibility. The most transformational ideas often sound impossible until someone proves otherwise.

Support alternative career paths. We should fund more researchers outside traditional academic institutions and recognize that the best science doesn’t always emerge from R1 universities. Explicitly value interdisciplinary training and create flexible career paths that don’t punish researchers who take time to develop unconventional ideas. Track where our most creative researchers go when they leave academia—if we’re consistently losing them to industry or foreign institutions, that’s a failure signal we must heed.

Acknowledge the challenge ahead. These reforms require sustained political will across multiple administrations and consistent support from Congress. They demand patience—accepting that transformational breakthroughs can’t be scheduled or guaranteed. But the alternative is clear: we continue optimizing for incremental progress while the fundamental problems remain unsolved and our international competitors embrace the risk we’ve abandoned.

The choice before us is stark. We can optimize the current system for productivity—incremental papers, measurable progress—or we can create space for transformative discovery. We cannot have both with the same funding mechanisms.

The cost of inaction is clear: we will miss the next Einstein, fall further behind in fundamental discovery, watch science become a bureaucratic exercise, and lose what made American science into a powerhouse of discovery.

This requires action at every level. Scientists must advocate for reform and be willing to champion risky proposals. Program officers must have the courage to fund work that reviewers call too speculative. Policymakers must create new funding models and resist the temptation to demand near-term results. The public must understand that breakthrough science looks different from incremental progress—it’s messy, unpredictable, and often wrong before it’s right.

In 1905, Einstein changed our understanding of the universe while working in a patent office with no grant funding. Today, our funding system would never have let him try. We need to fix that.

How to reform NIH…

Recently, I’ve mostly written in this respect about the NSF, but I also spent six years at the NIH, as a staff fellow in the intramural program (the biomedical medical center in Bethesda Maryland). When most folks think about the NIH, they are not really focussing on the intramural program. Rather, it’s the extramural program that gives out grant awards to biomedical researchers at US Colleges and Medical Centers that gets the attention. And I guess that’s fine because the extramural program represents about 90% of the NIH budget.

But, if I were going to magically reform the agency, I would focus on the intramural program. That’s because it has so much potential. With an annual budget north of $4B/year, America’s largest research medical center and thousands of young researchers from all over the world, it has so much potential. If Woods Hole is a summer nexus for life sciences during the summer, the NIH Bethesda campus is that thing on steroids year round.

The special sauce for the intramural program is that ideas can become experiments and then discoveries without the usual intermediate step of writing a proposal and waiting to see if it was funded. When I was at NIH, I could literally conceive of a new experiment, order the equipment and reagents and publish the results several months later. Hence, the intramural program has the structure in place to be a major science accelerator.

But, for some reason, when we think of such science accelerators, we generally consider private institutions like HHMI, the Allen Institutes and perhaps the Institute for Advanced Study in Princeton. What about NIH? On the criteria of critical mass, it dwarfs those places.

To my mind the problem lies in NIH’s ‘articles of confederation’ nature: it’s really 27 (or so) different Institutes and other units that are largely quite independent (especially the NCI), with a relatively weak central leadership. And this weak confederation organization plays out, not only on the Hill or in the awarding of extramural awards, but crucially also on the Bethesda campus, where intramural institute program directors rule fiefdoms that are more insular than academic units on a college campus. And this weak organizational architecture acts in the opposite direction of the science accelerator advantage that I wrote about above.

So here’s a big idea: let’s make the intramural program it’s own effective NIH institute. And have Congress authorize it and fund it separately, as a high risk, high payoff biomedical research program for the country. Does that sound like ARPA-H? Ooops. Well, then maybe we should just give the Bethesda campus to ARPA-H.

The 54…

My colleague and friend T, sent me this link to a Jeff Mervis piece in SCIENCE. Apparently 54 scientists have lost their jobs as a result of essentially hiding their connections to China while taking funding from the NIH. As with other funding compliance issues (for example protection of human subjects), violations can be career-enders. I am quite sure that other US funding agencies are taking a close look at their PI’s also.

The key issue here for me is not declaring a conflict of interest. If they had, then if I were on the enforcement side of the equation, I’d be looking at ways to manage that conflict. So if I were to hand out advice, it’d be to disclose as much as you possibly can to a funder all the time about anything that might have questionable optics. I suspect these 54 individuals would still be gainfully employed if that had pursued that approach.

That said, I’m disturbed by the implied national distrust of Asian scientists. The use of ethnic background as a trigger for suspicion has a long and sordid history, both here in the US and around the globe.

I’m also saddened by the de-coupling that’s occurring in science collaboration between nations–particularly between the US and China. That’ll be a loss for everyone because the really big science questions can’t be solved in isolation–Manhattan Project not withstanding.

And just when you think things couldn’t get worse…

This news from today’s Washington Post on new procedures for entering the Bethesda Campus. The NIH where I did my postdoc was like the United Nations. We came from all over the globe to improve help humans stay well. In my lab alone, there were individuals from Chile, Spain, Nigeria, Italy, Israel and Australia.  Biomedical research is qualitatively different from defense R&D–Zika and Malaria do not respect political boundaries. Nor does Alzheimer’s. I hope my former colleagues in positions of authority there are listening.

Putting a chill on international science…

I saw this piece by Jeff Mervis in SCIENCE today. Basically, if you are supported by NIH and you appear to them to be more “connected” to other nation states than you have explicitly disclosed, your institution may have some explaining to do. As Jeff points out, this can be somewhat confusing, since most productive scientists (particularly in biomedical research) do their work in a manner that crosses-borders–just like Ebola or SARS. This new NIH action affects the many, not the few.  As I’ve said from my time at the bully pulpit: science is inherently international. When you publish a journal article, it is read by your colleagues all over the globe (at least if it’s good science). And that dissemination is key to producing more excellent science.

I have no problem with disclosing contacts (although there is a paperwork burden). But creating a culture of intimidation that puts a chill on international collaboration–that is a problem.

The curse of soft money….

UCSF’s Henry Bourne has an interesting piece out in PNAS about the boom/bust cycle in biomedical research and specifically how the most recent version played out with vast over-building of infrastructure combined with a shift to soft-money support for PI’s. The documentation of the problems is very impressive, however the notion that this can be fixed piecemeal at a few “pioneer” research institutions I think is dead wrong. To my mind, such elitism is exactly how we arrived at our current situation. And in fact, I’m pleased to report that it’s actually at non-elite institutions where the hard money regime still exists, supported by tuition and, in the case of publics, some state support.

Do I have a solution? Here’s a possibility: I urge my biomedical colleagues to take a hard look at the decadal surveys of other fields (e.g. astronomy or oceanography) where hard prioritization choices are made nationally on the basis of evidence.

Graduate Tuition Support at NSF

One thing that I didn’t know, before I came to NSF in 2014 was that support for graduate student research assistants as part of regular research grants includes tuition support that is not capped. According to this NSF FAQ:

Tuition remission is generally treated as part of an organization’s fringe benefit rate or as a direct cost. NSF’s policy is that colleges and universities should budget tuition remission consistent with its established indirect cost rate methodology and negotiated rate agreement. If tuition remission is budgeted as a direct cost, it should be listed in the “Other” category of the Budget under “Other Direct Costs.

Note that there is nothing about a cap in the above guidance.

In contrast, NIH does cap tuition support for graduate research assistants at around $16K. Here is the relevant NIH policy:

Undergraduate and Predoctoral Trainees and Fellows:  For institutional training grants (T32, T34, T35, T90, TL1, TL4) and individual fellowships (F30, F31), an amount per predoctoral trainee equal to 60% of the level requested by the applicant institution, up to $16,000 per year, will be provided.

This difference between the two science agencies is trivial for a lot of cases, were graduate students are paying in-state tuition at a public university. You can find some of the relevant data from the College Board here. However, in the case of some of the private research universities, this can be a very large amount of money. Here is the relevant tuition information for Princeton. And here in the same for Boston University. Even for public institutions, the out-of-state tuition can be very large in comparison to $16K (Rackham graduate school, University of Michigan).

Taken to its logical conclusion, NSF risks becoming a tuition-support agency instead of a science agency as tuition costs continue to rise across the country. This makes no sense. NSF should cap tuition support just like NIH does.