
A View from Abroad
Mid-competition week for a panel reviewing proposals on genes and cells: the fifteen-minute clock starts, and the five of us assigned to this proposal dive in. We consider factors such as whether the proposer is early in their career and how the COVID pandemic might have affected their laboratory’s productivity. We carefully assess their plan for mentoring trainees, including their previous track record and plans. The excellence of the proposer is evaluated, not by raw bibliometric measures such as H-index, but by substantive contributions to the field. And we take a very close look at the proposal itself—not only in terms of intellectual merit, but also to make sure that it is distinct from the investigator’s other supported science. Is this an NIH study section? Nope. Is this an NSF panel? Again, no. This is a peer review for another G7 nation, to be unnamed in this post.
What struck me wasn’t that this country did peer review differently than NSF or NIH. What struck me was how similar it was. Same careful attention to mentoring. Same suspicion of bibliometrics. Same concern about overlaps with existing funding. I could have been in any panel room I’d sat in over three decades in Washington. And that’s when it hit me: among the wealthy nations that fund science, we’re all running variations on the same basic system. We argue about details – overhead rates, review criteria, funding durations – but we share fundamental assumptions about how science should work.
Thanks for reading sciencepolicyinsider! Subscribe for free to receive new posts and support my work.
Or so I thought. Until I stepped outside the world of science funding and began looking at how other countries organize technical knowledge. My second book project examines how Boeing, Airbus, and Embraer design commercial aircraft – and that research has revealed something I’d missed in all my years in government and academia.
Civic Epistemologies
The scholar Sheila Jasanoff has a concept called ‘civic epistemologies’ – the idea that different societies have fundamentally different ways of producing and validating knowledge. It’s not about organizational charts or funding mechanisms. It’s deeper than that. It’s about cultural assumptions: What questions are worth asking? What counts as evidence? Who gets to decide? How do we measure success?
When Americans design an airplane, we assume that technical decisions should be made by engineers based on data, with regulators checking compliance after the fact. Europeans embed social and labor concerns directly into the design process – workers’ councils have a say in production methods, and safety regulators are involved earlier. Brazilians organize around different assumptions entirely, shaped by their position as a developing economy entering a market dominated by established players.
Same engineering principles. Same physics. The same goal of building a safe, efficient aircraft. But fundamentally different answers to the question: Who should decide how this gets done?
I saw the same pattern as a working neuroscientist. American neuroscience tends to bet on fundamental discovery—map the circuits, understand the mechanisms, and applications would follow. Recording sea slug neurons during my training embodied this approach: study simpler systems, find conserved principles, apply them to humans. Europeans start closer to the clinic, organizing major research programs around disease categories and patient needs. Japanese neuroscience builds unusually tight links between academic labs and industry—electronics and engineering companies actively embedded in research networks, with clear paths toward commercialization: same neurons, same biology—different assumptions about how knowledge should flow from laboratory to society.
My new book project
So, where is this taking me? The short answer is I’m working on a new book about how American, European, and Brazilian cultures (think Boeing, Airbus, and Embraer) shape commercial aviation technology. Why planes? In my lifetime, I experienced firsthand the jet revolution: I started on the Comet, went on to the Pan Am 707s, and these days still enjoy the grandeur of the big twin aisle giants that connect us across oceans.
In the new book, I’m interested in comparing technical cultures through the lens of those jets (as technical artifacts). But beyond my lifetime fascination with aviation, the same questions apply to science policy itself: why do different countries organize technological knowledge differently? What can we learn from how other G7 nations fund science? And what cultural assumptions shape what gets built (airplanes OR research programs)?
Science Policy Insider Expands Its Scope
This brings me back to Science Policy Insider and where we’re headed. We are broadening our remit. In the future, we’ll expand to include a comparative analysis of research funding systems—both public agencies and private industry—drawing on insights from my aviation research. We’ll examine how different countries handle current challenges: AI governance, climate research, and research security.
On the practical side, we’ll provide insights for American researchers who work internationally or plan to—from navigating different grant systems to understanding why collaborations succeed or fail across cultural boundaries. And above all, we’ll consider what viewing American science policy from the outside reveals about our own system.
We’ll maintain our bi-weekly publishing schedule.
Science Policy Insider started with my promise to explain how American science policy really works from someone who was inside the system. Now we’re also going to explore what it looks like from the outside and what that perspective reveals about our own system.
I continue to invite readers’ questions, now not only about how things work in our own American discovery machine, but also about international science policy.